

HIAA EcoStruxure™ PME 9.0

Moving Forward •

Kurtis Langille, P. Eng for Paul Chisholm Senior Manager, Airport Facilities Halifax International Airport Authority

Agenda

1	Airport Overview
2	Electrical System Summary
3	PME Journey
4	HIAA Objectives
5	Future Goals
6	Questions

Airport Overview

\$3B+

Total Economic
Output

4.3M

Passengers
5th Year Record Growth

5.7%

Increase over 2017

37,000

Metric Tonnes of Cargo

200-240

Aircraft Movements / Day

1st

North America
Self-Service Baggage
Drop Off System

8th

Largest Airport in Canada

\$41M

Capital Investment in 2018

Electrical System Summary

(2) NS Power Supplies

- Currently Run ~2.5MW
- Peak ~ 3.1MW in Winter
- •Peak ~ 3.5 MW in Summer
- •12M Rate Class

(3) 2MW Generators

- All Start in Loss of Mains and take load within 15 seconds
- •Run and Maintained as per CSA C282 Standard

PME Journey

- 2012 Electrical & Gas Sub-Metering Improvements Project
 - Installed ION Power Meters in All Substations (FEC and CSC)
 - Meters were connected to Existing Building Automation System
- 2016 Power System Project that renewed switchgear at Main Substation and
 (4) Substations in the ATB and FEC
 - Redundant utility supply from separate NSP substations
 - Enhanced generator backup system with monitoring
 - Redundant routing between Main Substation and ATB
 - UPS System upgrades for critical IT systems
 - Replacement of aging ATB substation equipment
 - Expanded backup power capability at CSC

PME Journey

- 2016 Started the Electrical Power Monitoring System Project
 - Installed StruxureWare Power Monitoring Expert 8.0 which allowed HIAA to:
 - > Track Real-Time Power Conditions
 - ➤ Study Trends
 - ➤ Reveal Energy Wastes
 - > Find unused Capacity
 - ➤ Verify Efficiency Improvements
 - > Allocate Costs to Buildings, Departments, Processes, and to Capital Projects
 - Connected Existing Installed Base of ION Meters
 - Installed new ION 7650 Power Meters to Monitor Incoming Power Quality from the Utility and from own Generators

EcoStruxure™ PME HIAA Objectives

- Maintain Quality of Power Supply to Airport Facilities
- Log Electrical System Performance and Regulatory Data
- Report on Tenant Utility Usage for Cost Recovery
- Monitor and Report Utility Consumption in Order to Improve Sustainability

Maintain Quality of Power Supply to Airport

Device Time 4/27/2019 11:46:06.891 AM

Device Type 7650

MAIN_SUB.M50

Device Diagram

Change Date Range

Duration	Magnitude Phase1	Magnitude Phase2	Magnitude Phase3	Cause	Timestamp
0.000390	-	-	134.000	Transient Phase3	4/27/2019 7:35:17.488 AM
0.000195	-	-	129.000	Transient Phase3	4/26/2019 11:41:27.477 AM
0.000227	126.000	-	-	Transient Phase1	4/26/2019 11:41:27.477 AM
0.001204	139.000	-	-	Transient Phase1	4/4/2019 3:52:12.716 PM
0.000976	-	128.000	-	Transient Phase2	4/4/2019 12:20:59.062 PM
0.000618	-	-	144.000	Transient Phase3	4/4/2019 12:20:59.054 PM
0.000618	142.000	-	-	Transient Phase1	4/4/2019 12:20:59.054 PM
0.300000	78.547	102.375	101.163	SagSwell	4/4/2019 11:51:46.121 AM
0.050000	80.038	102.787	102.387	SagSwell	4/4/2019 11:51:41.031 AM
0.068000	77.724	92.663	94.121	SagSwell	4/3/2019 4:52:27.226 PM
0.067000	77.834	92.505	94.311	SagSwell	4/3/2019 4:52:21.074 PM
0.000716	130.000	-	-	Transient Phase1	4/3/2019 3:57:48.942 PM
0.000065	-	126.000	-	Transient Phase2	4/3/2019 1:35:51.226 PM
0.042000	102.289	64.210	102.686	SagSwell	4/3/2019 1:35:49.134 PM
0.025000	101.908	77.007	102.337	SagSwell	4/3/2019 1:26:11.683 PM
0.016000	101.620	76.471	102.758	SagSwell	4/3/2019 12:19:23.512 PM
0.000260	-	-	127.000	Transient Phase3	4/2/2019 3:05:51.580 PM

MAIN_SUB.M50

Device Diagram

Change Date Range

Show Waveforms

Timestamp	Cause	Cause Value	Effect	Effect Value	V1 Waveform	V2 Waveform	V3 Waveform	I1 Waveform	I2 Waveform	I3 Waveform
4/27/2019 7:35:17.488 AM	Disturbance Direction Detection 1	Analysis Done	Disturbance Direction Detection 1	Disturbance Direction Detected - Downstream - Medium Confidence	-	-	-	-	-	-
4/26/2019 11:41:27.477 AM	Disturbance Direction Detection 1	Analysis Done	Disturbance Direction Detection 1	Disturbance Direction Detected - Upstream - High Confidence	-	-	-	-	-	-
4/4/2019 3:52:12.716 PM	Disturbance Direction Detection 1	Analysis Done	Disturbance Direction Detection 1	Disturbance Direction Detected - Upstream - High Confidence	-	-	-	-	-	-
4/4/2019 12:20:59.054 PM	Disturbance Direction Detection 1	Analysis Done	Disturbance Direction Detection 1	Disturbance Direction Detected - Upstream - Medium Confidence	-	-	-	-	-	-
4/4/2019 11:51:46.121 AM	Sag/Swell 1	Disturbance End	Voltage Disturbance State	Normal	~~	~~	~~ [~~ 🗌	~~ 🔲	~~ 🔲
4/4/2019 11:51:45.821 AM	Disturbance Direction Detection 1	Analysis Done	Disturbance Direction Detection 1	Disturbance Direction Detected - Upstream - High Confidence	~~	~~	~~	~~ 🗌	~~ 🗌	~~ 🗌
4/4/2019 11:51:45.821 AM	Sag/Swell 1	Disturbance Start	Voltage Disturbance State	Disturbance	-	-	-	-	-	-
4/4/2019 11:51:41.031 AM	Sag/Swell 1	Disturbance End	Voltage Disturbance State	Normal	~~	~~	~~ [~~ 🗌	~~ 🔲	~~ 🔲
4/4/2019 11:51:40.981 AM	Disturbance Direction Detection 1	Analysis Done	Disturbance Direction Detection 1	Disturbance Direction Detected - Upstream - High Confidence	~~ 🕜	~~ 🗸	~~ 🗸	~~ 🗸	~~ 🕜	~~ 🕜
4/4/2019 11:51:40.981 AM	Sag/Swell 1	Disturbance Start	Voltage Disturbance State	Disturbance	-	-	-	-	-	-
4/3/2019 4:52:27.226 PM	Sag/Swell 1	Disturbance End	Voltage Disturbance State	Normal	~~	~~	~~ [~~ 🗌	~~ 🔲	~~ 🔲
4/3/2019 4:52:27.159 PM	Disturbance Direction Detection 1	Analysis Done	Disturbance Direction Detection 1	Disturbance Direction Detected - Upstream - Medium Confidence	~~	~~	~~	~~	~~	~~ 🗌
4/3/2019 4:52:27.159 PM	Sag/Swell 1	Disturbance Start	Voltage Disturbance State	Disturbance	-	-	-	-	-	-
4/3/2019 4:52:21.074 PM	Sag/Swell 1	Disturbance End	Voltage Disturbance State	Normal	-	-	-	-	-	-
4/3/2019 4:52:21.066 PM	-	-	-	-	~~	~~	~~	~~ 🗌	~~	~~ 🗌
4/3/2019 4:52:21.008 PM	Disturbance Direction Detection 1	Analysis Done	Disturbance Direction Detection 1	Disturbance Direction Detected - Upstream - High Confidence	~~	~~	~~	~~	~~	~~
4/3/2019 4:52:21.008 PM	Sag/Swell 1	Disturbance Start	Voltage Disturbance State	Disturbance	-	-	-	-	-	-
4/3/2019 3:57:48.942 PM	Disturbance Direction Detection 1	Analysis Done	Disturbance Direction Detection 1	Disturbance Direction Detected - Upstream - High Confidence	-	-	-	-	-	-

UPS system

B1038A Eaton 9390

Percent Full Load : 24.0 %

Watts Output : 21,700.0 Watts

P W

Percent Full Load: 10.0 %

Watts Output: 2,700.0 Watts

CSC Eaton 9390

Precent Full Load : 15.0 %	Precent Full Load : 48.0 %	Precent Full Load : 15.0 %	Precent Full Load : 22.0 %	
UPS.APC_B070 Watts Output : 240.0 Watts	UPS.APC_1067C Watts Output : 1,062.0 Watts	UPS.APC_2053 Watts Output : 240.0 Watts	UPS.APC_2084B_R6 Watts Output : 360.0 Watt	S UPS.APC_2620_3 Watts Output : 714.0 Watts
Precent Full Load : 27.0 % UPS.APC_B1033 Watts Output : 460.0 Watts	Precent Full Load : 40.0 % UPS.APC_1113A Watts Output : 819.0 Watts	Precent Full Load : 14.0 % UPS.APC_2084A_3 Watts Output : 232.0 Watts	Precent Full Load : 27.0 % UPS.APC_2112F Watts Output : 585.0 Watts	
Precent Full Load : 16.0 %	Precent Full Load : 23.0 %	Precent Full Load : 20.0 %	Precent Full Load : 23.0 %	Precent Full Load : 31.0 %
UPS.APC_1017N Watts Output : 234.0 Watts	UPS.APC_1528A Watts Output : 460.0 Watts	UPS.APC_2084A_4 Watts Output : 342.0 Watts	UPS_APC_2505 Watts Output : 460.0 Watts	UPS.APC_5009 Watts Output : 590.0 Watts
Precent Full Load: 0.0 %	Precent Full Load : 5.0 %	Precent Full Load : 32.0 %	Precent Full Load : 11.0 %	
UPS.APC_1021B Watts Output : 0.0 Watts	UPS.APC_1540A Watts Output : 0.0 Watts	UPS.APC_2084A_5 Watts Output: 678.0 Watts	UPS.APC_2517D Watts Output : 118.0 Watts	5
Precent Full Load : 31.0 %	Precent Full Load : 18.0 %	Precent Full Load : 0.0 %	Precent Full Load : 20.0 %	
UPS.APC_1028B Watts Output : 720.0 Watts	UPS.APC_2030_1 Watts Output : 360.0 Watts	UPS.APC_2084A_R6 Watts Output : 0.0 Watts	UPS.APC_2620 Watts Output : 357.0 Watt	s

Log Electrical System Performance and Regulatory Data

Generator Run Report - G2

For

HIAA

FEC

Prepared By

PME 9.0

Test Period

4/20/2019 10:55:32 PM - 4/21/2019 1:41:49 PM (Atlantic Daylight Time)

Generator Run Report - G2

4/20/2019 10:55:32 PM - 4/21/2019 1:41:49 PM (Atlantic Daylight Time)

Sources in EPSS Group: FEC

Source	Туре	Description
Generator_2	Generator	G2

Generator Run Report - G2

4/20/2019 10:55:32 PM - 4/21/2019 1:41:49 PM (Atlantic Daylight Time)

ATS and Generator Events Summary

Timestamp	Source Name	Status
4/20/2019 10:55:32.41 PM	Generator_2	Starting
4/20/2019 10:55:34.34 PM	Generator_2	Running
4/21/2019 1:41:49.43 PM	Generator_2	Stopped

Generator Run Report - G2

4/20/2019 10:55:32 PM - 4/21/2019 1:41:49 PM (Atlantic Daylight Time)

Generator Summary

Generator: Generator_2 Nameplate: 500 kW

Start Time: 4/20/2019 10:55:34 PM Stop Time: 4/21/2019 1:41:49 PM

Evaluation Method	Overall Test Status
Load	PASS

Test	Stage	Test Status
Load	One	PASS

Generator Load Summary

Generator: Generator_2 Nameplate: 500 kW

Start Time: 4/20/2019 10:55:34 PM Stop Time: 4/21/2019 1:41:49 PM

Longest Continuous Load	Nameplate %	Threshold	Actual Run Duration	Required Run Duration	Test Status
4/21/2019 5:33:00 AM - 4/21/2019 10:34:00 AM	30%	150 kW	301.0 min	60 min	PASS

Min, Avg, Max Readings for the Longest Continuous Load

Measurement	Min	Avg	Max	Units
Active Power	192.95	199.73	218.18	kW
Apparent Power	309.40	321.82	343.13	kVA
Current Phase A	44.38	49.49	53.63	Α
Current Phase B	60.82	61.04	65.21	Α
Current Phase C	29.59	29.98	32.84	Α
Voltage Phases AB	4,165.03	4,169.81	4,173.17	V
Voltage Phases AN	2,433.98	2,438.95	2,442.79	V
Voltage Phases BC	4,182.86	4,203.22	4,218.91	V
Voltage Phases BN	2,389.99	2,397.56	2,402.46	V
Voltage Phases CA	4,255.42	4,268.62	4,288.22	V
Voltages Phase CN	2,450.73	2,462.59	2,476.21	V

Tenant Utility Usage for Cost Recovery

Tenants

M13-Old Firehall

208.5 V 7.4 kW 338,627.3 kWh

23,767.0 kWh

206.7 V 0.0 kW

551,331.2 kWh H2O Subway (1060) m3:66.56

602.9 V 50.3 kW 319,933.3 kWh H2O Bia Mara (2523)

m3:407.42

0.0 kW

0.0 kWh

M34-Hudson (2607) 600.7 V 6.6 kW 44,271.2 kWh

601.0 V 0.0 kW -0.1 kWh

600.2 V 0.0 kW 0.0 kWh

199.7 V 1.7 kW 21,129.3 kWh

HalifaxStanfield

H2O Global Fill (1018) m3:14.16

M38-Air Can (B1075)

202.2 V 0.7 kW 57.018.7 kWh

M54-B.Juice (2504X)

210.8 V

3.0 kW

241,720.0 kWh

H2O B.Juice (2504Y)

m3:179.72

M40-Air Can (B022B)

210.3 V 209.4 V 0.6 kW 1.7 kW 9,931.4 kWh 24.653.1 kWh

M41-Hudson (1020A)

209.5 V 0.0 kW 30,331.6 kWh

M57- Not Used (2609)

600.5 V

0.0 kW

73,823.0 kWh

M42-Miller Corn (1064)

208.3 V 1.2 kW 15,403.4 kWh

M58-Tim's (2085)

600.0 V

37.1 kW

61,993.2 kWh

H2O Tim's (2085)

m3:141.73

M43-Hudson (1076)

205.1 V 11.2 kW 132,345.1 kWh

M59-Vino (2509)

210.6 V

3.3 kW

49,982.9 kWh

H2O Vino (2509)

m3:36.97

M44-Firken (2504C) 204.7 V

22.6 kW 151,708.7 kWh

H2O Firken (2504C) m3:380.16

M60-Panizza (1044)

205.3 V

7.3 kW

M52- StarBucks (1032) M53-Connected (2504E,F) 204.8 V

5.0 kW 424,223.0 kWh

H2O Starbucks (1032) m3:89.05

M61-M.Leaf (3506)

610.3 V 9.6 kW 24,527.0 kWh 100,694.6 kWh

H2O Panizza (1044) m3:59.99

M74-Lindsay Trailer

205.8 V 0.0 kW 18,758.1 kWh H2O Maple Lounge (3506) m3:0.00

210.9 V H2O Swissport Hall (452) 2.0 kW m3:0.00

774,262.0 kWh H2O Connected (2504E,F) m3:39.85

M62-Air Can ()

1.7 kW

206.5 V 136.7 V 12.0 kW 98,349.3 kWh 16,020.8 kWh

> H2O Clearwater (1074) m3:398.36

M63-Clearwater (1074)

M64-Hudson (2504H)

208.1 V 6.1 kW 71,632.6 kWh

M55-Hudson (2116)

205.5 V

30.0 kW

891,169.0 kWh

207.9 V 1.4 kW 21,191.4 kWh

H2O A/C Warm (1520) m3:66.75

M65-Air Can (B022B)

M56-S.of Maritimes (2115)

205.6 V

15.0 kW

1,169,127.0 kWh

H2O S. of Maritimes (2115A)

m3:55.90

208.9 V 0.9 kW 15.089.0 kWh

205.5 V 39.0 kW 149,649.1 kWh

(Multiplier X60 included in shown values) H2O A&W (1052) m3:270.90

M69-Tim's (1055) 205.2 V 27.3 kW 179,197.0 kWh

(Multiplier X40 included in shown values) H2O Tim's (1055) m3:196.08

M70-Ale House (1059) 204.1 V 27.0 kW 67.734.8 kWh

(Multiplier X60 included in shown values) H2O Ale House (1059) m3:295.71

M71-Starbucks (2504Z) 209.6 V 13.6 kW 99.846.5 kWh

(Multiplier X80 included in shown values) H2O Starbucks (2504Z) m3:111.76

H2O YHZ MKT(2504P) m3: 120.90

1.0 kW

M75- Hudson (2608) 601.1 V 13,653.0 kWh

Monitor and Report Utility Consumption

0 0 3

Sustainable Results

Future Goals

- Additional Energy Projects

- Lighting Controls
- Additional Day Light Harvesting
- Apron Lighting with Dimming Controls

- Protection Monitoring

- Integrate Protection breakers into PME
- Monitor Breaker Position and Number of Operations for improved Maintenance

- WAGES Integration

Integrate Water and Gas Meters into PME

